Existence of entropic solutions of elliptic problem in anisotropic Sobolev–Orlicz spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 15-38
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the Dirichlet problem in an arbitrary unbounded domain with inhomogeneous boundary conditions for a certain class of anisotropic elliptic equations whose right-hand sides belong to the class $L_1$ and prove the existence of entropic solutions in anisotropic Sobolev–Orlicz spaces.
Mots-clés :
anisotropic elliptic equation, entropic solution, existence of solution
Keywords: Sobolev–Orlicz space, $N$-function, pseudo-monotonic operator.
Keywords: Sobolev–Orlicz space, $N$-function, pseudo-monotonic operator.
@article{INTO_2017_139_a2,
author = {L. M. Kozhevnikova},
title = {Existence of entropic solutions of elliptic problem in anisotropic {Sobolev{\textendash}Orlicz} spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {15--38},
year = {2017},
volume = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a2/}
}
TY - JOUR AU - L. M. Kozhevnikova TI - Existence of entropic solutions of elliptic problem in anisotropic Sobolev–Orlicz spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 15 EP - 38 VL - 139 UR - http://geodesic.mathdoc.fr/item/INTO_2017_139_a2/ LA - ru ID - INTO_2017_139_a2 ER -
%0 Journal Article %A L. M. Kozhevnikova %T Existence of entropic solutions of elliptic problem in anisotropic Sobolev–Orlicz spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 15-38 %V 139 %U http://geodesic.mathdoc.fr/item/INTO_2017_139_a2/ %G ru %F INTO_2017_139_a2
L. M. Kozhevnikova. Existence of entropic solutions of elliptic problem in anisotropic Sobolev–Orlicz spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 15-38. http://geodesic.mathdoc.fr/item/INTO_2017_139_a2/