Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 114-127
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we construct stability regions (in the linear approximation) of triangular libration points for the planar, bounded, elliptical three-body problem and examine bifurcations that occur when parameters of the system pass through the boundaries of these regions. A new scheme for the construction of stability regions is presented, which leads to approximation formulas describing these boundaries. We prove that on one part of the boundary, the main scenario of bifurcation is the appearance of nonstationary $4\pi$-periodic solutions that are close to a triangular libration point, whereas on the other part, the main scenario is the appearance of quasiperiodic solutions.
Keywords:
three-body problem, libration point, stability, stability region, periodic solutions, parameter.
Mots-clés : bifurcation
Mots-clés : bifurcation
@article{INTO_2017_139_a10,
author = {M. G. Yumagulov},
title = {Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {114--127},
year = {2017},
volume = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a10/}
}
TY - JOUR AU - M. G. Yumagulov TI - Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 114 EP - 127 VL - 139 UR - http://geodesic.mathdoc.fr/item/INTO_2017_139_a10/ LA - ru ID - INTO_2017_139_a10 ER -
%0 Journal Article %A M. G. Yumagulov %T Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 114-127 %V 139 %U http://geodesic.mathdoc.fr/item/INTO_2017_139_a10/ %G ru %F INTO_2017_139_a10
M. G. Yumagulov. Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 114-127. http://geodesic.mathdoc.fr/item/INTO_2017_139_a10/