Description of functionals that are minimized by $\Phi$-triangulations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 9-14
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain condition for a function $f$ defined on the set of simplexes $S$ under which the values $F(T)=\sum\limits_{S\in T}f(S)$ or $F_f^m(T)=\max\limits_{S\in T}f(S)$ are minimal for $\Phi$-triangulations of $T$. As consequences, we also obtain certain extremal properties of the classical Delaunay triangulation.
Mots-clés :
triangulation, Delaunay condition
Keywords: empty sphere, functional.
Keywords: empty sphere, functional.
@article{INTO_2017_139_a1,
author = {V. A. Klyachin and E. G. Grigorieva},
title = {Description of functionals that are minimized by $\Phi$-triangulations},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {9--14},
year = {2017},
volume = {139},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a1/}
}
TY - JOUR AU - V. A. Klyachin AU - E. G. Grigorieva TI - Description of functionals that are minimized by $\Phi$-triangulations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 9 EP - 14 VL - 139 UR - http://geodesic.mathdoc.fr/item/INTO_2017_139_a1/ LA - ru ID - INTO_2017_139_a1 ER -
%0 Journal Article %A V. A. Klyachin %A E. G. Grigorieva %T Description of functionals that are minimized by $\Phi$-triangulations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 9-14 %V 139 %U http://geodesic.mathdoc.fr/item/INTO_2017_139_a1/ %G ru %F INTO_2017_139_a1
V. A. Klyachin; E. G. Grigorieva. Description of functionals that are minimized by $\Phi$-triangulations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 9-14. http://geodesic.mathdoc.fr/item/INTO_2017_139_a1/