N.~V.~Stepanov and his geometric theory of ordinary differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review main results of the geometric theory of ordinary differential equations obtained by the eminent Russian geometer N. V. Stepanov (1926–1991). Some of results of Stepanov are illustrated by examples of third- and five-order equations.
Keywords: ordinary differential equation, connection, differential-algebraic characteristics, symmetry group.
Mots-clés : invariant, classification
@article{INTO_2017_139_a0,
     author = {G. A. Banaru},
     title = {N.~V.~Stepanov and his geometric theory of ordinary differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {139},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_139_a0/}
}
TY  - JOUR
AU  - G. A. Banaru
TI  - N.~V.~Stepanov and his geometric theory of ordinary differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 3
EP  - 8
VL  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_139_a0/
LA  - ru
ID  - INTO_2017_139_a0
ER  - 
%0 Journal Article
%A G. A. Banaru
%T N.~V.~Stepanov and his geometric theory of ordinary differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 3-8
%V 139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_139_a0/
%G ru
%F INTO_2017_139_a0
G. A. Banaru. N.~V.~Stepanov and his geometric theory of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 139 (2017), pp. 3-8. http://geodesic.mathdoc.fr/item/INTO_2017_139_a0/