Lower estimates for distances from a given quantum channel to certain classes of quantum channels
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 125-131
Voir la notice de l'article provenant de la source Math-Net.Ru
By using estimates for the variation of quantum mutual information and the relative entropy of entanglement, we obtain $\varepsilon$-exact lower
estimates for distances from a given quantum channels to sets of degraded, anti-degraded, and entanglement-breaking channels. As an auxiliary result, we obtain $\varepsilon$-exact lower estimates for the distance from a given two-particle state to the set of all separable states.
Keywords:
quantum state, quantum channel, coherent information, separable states, relative entropy of entanglement.
@article{INTO_2017_138_a8,
author = {M. E. Shirokov and A. V. Bulinski},
title = {Lower estimates for distances from a given quantum channel to certain classes of quantum channels},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {125--131},
publisher = {mathdoc},
volume = {138},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_138_a8/}
}
TY - JOUR AU - M. E. Shirokov AU - A. V. Bulinski TI - Lower estimates for distances from a given quantum channel to certain classes of quantum channels JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 125 EP - 131 VL - 138 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_138_a8/ LA - ru ID - INTO_2017_138_a8 ER -
%0 Journal Article %A M. E. Shirokov %A A. V. Bulinski %T Lower estimates for distances from a given quantum channel to certain classes of quantum channels %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 125-131 %V 138 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_138_a8/ %G ru %F INTO_2017_138_a8
M. E. Shirokov; A. V. Bulinski. Lower estimates for distances from a given quantum channel to certain classes of quantum channels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 125-131. http://geodesic.mathdoc.fr/item/INTO_2017_138_a8/