Quantum mappings and characterization of entangled quantum states
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 99-124
Voir la notice de l'article provenant de la source Math-Net.Ru
We review quantum mappings used in problems of characterization of entanglement of two-part and multi-particle systems. Together with positive and $n$-tensorial constant positive mappings, we consider physical dynamical processes that lead to quantum channels that break entanglement, annihilate entanglement, dissociate entanglement of multi-particle states, and prohibit distillation of output states. We introduce a new class of absolutely disentangling channels that provide absolutely separable states at the output, and also characterize a new class of entanglement-imposing channels whose output states are entangled. We present states that are most resistant to loss of entanglementand prove that they may differ from maximally entangled states.
Keywords:
quantum channel, positive mapping
Mots-clés : quantum entanglement, multi-particle entanglement.
Mots-clés : quantum entanglement, multi-particle entanglement.
@article{INTO_2017_138_a7,
author = {S. N. Filippov},
title = {Quantum mappings and characterization of entangled quantum states},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {99--124},
publisher = {mathdoc},
volume = {138},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_138_a7/}
}
TY - JOUR AU - S. N. Filippov TI - Quantum mappings and characterization of entangled quantum states JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 99 EP - 124 VL - 138 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_138_a7/ LA - ru ID - INTO_2017_138_a7 ER -
%0 Journal Article %A S. N. Filippov %T Quantum mappings and characterization of entangled quantum states %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 99-124 %V 138 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_138_a7/ %G ru %F INTO_2017_138_a7
S. N. Filippov. Quantum mappings and characterization of entangled quantum states. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 99-124. http://geodesic.mathdoc.fr/item/INTO_2017_138_a7/