Algebras of projectors and mutually unbiased bases in dimension~7
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 19-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply methods of the representation theory, combinatorial algebra, and noncommutative geometry to various problems of quantum tomography. We introduce the algebra of projectors that satisfy a certain commutation relation, examine this relation by combinatorial methods, and develop the representation theory of this algebra. We also present a geometrical interpretation of our problem and apply the results obtained to the description of the Petrescu family of mutually unbiased bases in dimension $7$.
Keywords: mutually unbiased bases, orthogonal pairs
Mots-clés : commutation relation, algebra of observables.
@article{INTO_2017_138_a2,
     author = {I. Yu. Zhdanovskii and A. S. Kocherova},
     title = {Algebras of projectors and mutually unbiased bases in dimension~7},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--49},
     publisher = {mathdoc},
     volume = {138},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/}
}
TY  - JOUR
AU  - I. Yu. Zhdanovskii
AU  - A. S. Kocherova
TI  - Algebras of projectors and mutually unbiased bases in dimension~7
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 19
EP  - 49
VL  - 138
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/
LA  - ru
ID  - INTO_2017_138_a2
ER  - 
%0 Journal Article
%A I. Yu. Zhdanovskii
%A A. S. Kocherova
%T Algebras of projectors and mutually unbiased bases in dimension~7
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 19-49
%V 138
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/
%G ru
%F INTO_2017_138_a2
I. Yu. Zhdanovskii; A. S. Kocherova. Algebras of projectors and mutually unbiased bases in dimension~7. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 19-49. http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/