Algebras of projectors and mutually unbiased bases in dimension 7
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 19-49
Cet article a éte moissonné depuis la source Math-Net.Ru
We apply methods of the representation theory, combinatorial algebra, and noncommutative geometry to various problems of quantum tomography. We introduce the algebra of projectors that satisfy a certain commutation relation, examine this relation by combinatorial methods, and develop the representation theory of this algebra. We also present a geometrical interpretation of our problem and apply the results obtained to the description of the Petrescu family of mutually unbiased bases in dimension $7$.
Keywords:
mutually unbiased bases, orthogonal pairs
Mots-clés : commutation relation, algebra of observables.
Mots-clés : commutation relation, algebra of observables.
@article{INTO_2017_138_a2,
author = {I. Yu. Zhdanovskii and A. S. Kocherova},
title = {Algebras of projectors and mutually unbiased bases in dimension~7},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {19--49},
year = {2017},
volume = {138},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/}
}
TY - JOUR AU - I. Yu. Zhdanovskii AU - A. S. Kocherova TI - Algebras of projectors and mutually unbiased bases in dimension 7 JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 19 EP - 49 VL - 138 UR - http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/ LA - ru ID - INTO_2017_138_a2 ER -
%0 Journal Article %A I. Yu. Zhdanovskii %A A. S. Kocherova %T Algebras of projectors and mutually unbiased bases in dimension 7 %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 19-49 %V 138 %U http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/ %G ru %F INTO_2017_138_a2
I. Yu. Zhdanovskii; A. S. Kocherova. Algebras of projectors and mutually unbiased bases in dimension 7. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 19-49. http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/