Algebras of projectors and mutually unbiased bases in dimension 7
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 19-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We apply methods of the representation theory, combinatorial algebra, and noncommutative geometry to various problems of quantum tomography. We introduce the algebra of projectors that satisfy a certain commutation relation, examine this relation by combinatorial methods, and develop the representation theory of this algebra. We also present a geometrical interpretation of our problem and apply the results obtained to the description of the Petrescu family of mutually unbiased bases in dimension $7$.
Keywords: mutually unbiased bases, orthogonal pairs
Mots-clés : commutation relation, algebra of observables.
@article{INTO_2017_138_a2,
     author = {I. Yu. Zhdanovskii and A. S. Kocherova},
     title = {Algebras of projectors and mutually unbiased bases in dimension~7},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--49},
     year = {2017},
     volume = {138},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/}
}
TY  - JOUR
AU  - I. Yu. Zhdanovskii
AU  - A. S. Kocherova
TI  - Algebras of projectors and mutually unbiased bases in dimension 7
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 19
EP  - 49
VL  - 138
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/
LA  - ru
ID  - INTO_2017_138_a2
ER  - 
%0 Journal Article
%A I. Yu. Zhdanovskii
%A A. S. Kocherova
%T Algebras of projectors and mutually unbiased bases in dimension 7
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 19-49
%V 138
%U http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/
%G ru
%F INTO_2017_138_a2
I. Yu. Zhdanovskii; A. S. Kocherova. Algebras of projectors and mutually unbiased bases in dimension 7. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum computing, Tome 138 (2017), pp. 19-49. http://geodesic.mathdoc.fr/item/INTO_2017_138_a2/