Vortex steady planar entropic flows of ideal gases
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 137 (2017), pp. 97-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find all solutions to the submodel of vortex, steady, planar, barotropic, entropic flows of an ideal gas and show that possible motions are exhausted by rectilinear motions under a constant pressure and motions along concentric circles. We present a group classification of the model of planar, vortex, entropic, nonbarotropic flows, examine invariant submodels, and propose a physical interpretation of certain solutions.
Keywords: vortex flow, group analysis
Mots-clés : optimal system of subalgebras, invariant solution.
@article{INTO_2017_137_a5,
     author = {S. V. Khabirov},
     title = {Vortex steady planar entropic flows of ideal gases},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {97--103},
     year = {2017},
     volume = {137},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/}
}
TY  - JOUR
AU  - S. V. Khabirov
TI  - Vortex steady planar entropic flows of ideal gases
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 97
EP  - 103
VL  - 137
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/
LA  - ru
ID  - INTO_2017_137_a5
ER  - 
%0 Journal Article
%A S. V. Khabirov
%T Vortex steady planar entropic flows of ideal gases
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 97-103
%V 137
%U http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/
%G ru
%F INTO_2017_137_a5
S. V. Khabirov. Vortex steady planar entropic flows of ideal gases. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 137 (2017), pp. 97-103. http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/