Vortex steady planar entropic flows of ideal gases
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 137 (2017), pp. 97-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find all solutions to the submodel of vortex, steady, planar, barotropic, entropic flows of an ideal gas and show that possible motions are exhausted by rectilinear motions under a constant pressure and motions along concentric circles. We present a group classification of the model of planar, vortex, entropic, nonbarotropic flows, examine invariant submodels, and propose a physical interpretation of certain solutions.
Keywords: vortex flow, group analysis
Mots-clés : optimal system of subalgebras, invariant solution.
@article{INTO_2017_137_a5,
     author = {S. V. Khabirov},
     title = {Vortex steady planar entropic flows of ideal gases},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {97--103},
     publisher = {mathdoc},
     volume = {137},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/}
}
TY  - JOUR
AU  - S. V. Khabirov
TI  - Vortex steady planar entropic flows of ideal gases
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 97
EP  - 103
VL  - 137
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/
LA  - ru
ID  - INTO_2017_137_a5
ER  - 
%0 Journal Article
%A S. V. Khabirov
%T Vortex steady planar entropic flows of ideal gases
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 97-103
%V 137
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/
%G ru
%F INTO_2017_137_a5
S. V. Khabirov. Vortex steady planar entropic flows of ideal gases. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations. Mathematical physics, Tome 137 (2017), pp. 97-103. http://geodesic.mathdoc.fr/item/INTO_2017_137_a5/