Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2017_135_a0, author = {M. V. Shamolin}, title = {Low-dimensional and multi-dimensional pendulums in nonconservative fields. {Part~2}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--93}, publisher = {mathdoc}, volume = {135}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2017_135_a0/} }
TY - JOUR AU - M. V. Shamolin TI - Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part~2 JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 3 EP - 93 VL - 135 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_135_a0/ LA - ru ID - INTO_2017_135_a0 ER -
%0 Journal Article %A M. V. Shamolin %T Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part~2 %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 3-93 %V 135 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_135_a0/ %G ru %F INTO_2017_135_a0
M. V. Shamolin. Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part~2. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Dynamical systems, Tome 135 (2017), pp. 3-93. http://geodesic.mathdoc.fr/item/INTO_2017_135_a0/