Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2017_134_a1, author = {M. V. Shamolin}, title = {Low-dimensional and multi-dimensional pendulums in nonconservative fields. {Part~1}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {6--128}, publisher = {mathdoc}, volume = {134}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2017_134_a1/} }
TY - JOUR AU - M. V. Shamolin TI - Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part~1 JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 6 EP - 128 VL - 134 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_134_a1/ LA - ru ID - INTO_2017_134_a1 ER -
%0 Journal Article %A M. V. Shamolin %T Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part~1 %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 6-128 %V 134 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_134_a1/ %G ru %F INTO_2017_134_a1
M. V. Shamolin. Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part~1. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Dynamical systems, Tome 134 (2017), pp. 6-128. http://geodesic.mathdoc.fr/item/INTO_2017_134_a1/