Finite-Difference Methods for Fractional Differential Equations of Order $1/2$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional analysis, Tome 133 (2017), pp. 120-129
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work, we study approximations of solutions of fractional differential equations of order ${1}/{2}$. We present a new method of approximation and obtain the order of convergence. The presentation is given within the abstract framework of a semidiscrete approximation scheme, which includes finite-element methods, finite-difference schemes, and projection methods.
Keywords:
fractional Cauchy problem, Banach space, $\alpha$-times resolution family, discretization methods, difference scheme, error estimate.
@article{INTO_2017_133_a2,
author = {M. Yu. Kokurin and S. I. Piskarev and M. Spreafico},
title = {Finite-Difference {Methods} for {Fractional} {Differential} {Equations} of {Order} $1/2$},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {120--129},
year = {2017},
volume = {133},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_133_a2/}
}
TY - JOUR AU - M. Yu. Kokurin AU - S. I. Piskarev AU - M. Spreafico TI - Finite-Difference Methods for Fractional Differential Equations of Order $1/2$ JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 120 EP - 129 VL - 133 UR - http://geodesic.mathdoc.fr/item/INTO_2017_133_a2/ LA - ru ID - INTO_2017_133_a2 ER -
%0 Journal Article %A M. Yu. Kokurin %A S. I. Piskarev %A M. Spreafico %T Finite-Difference Methods for Fractional Differential Equations of Order $1/2$ %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 120-129 %V 133 %U http://geodesic.mathdoc.fr/item/INTO_2017_133_a2/ %G ru %F INTO_2017_133_a2
M. Yu. Kokurin; S. I. Piskarev; M. Spreafico. Finite-Difference Methods for Fractional Differential Equations of Order $1/2$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional analysis, Tome 133 (2017), pp. 120-129. http://geodesic.mathdoc.fr/item/INTO_2017_133_a2/