Criteria of the uniqueness of solutions and well-posedness of inverse source problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional analysis, Tome 133 (2017), pp. 81-119
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the relation between the well-posedness of the inverse problem of the recovering the source in an abstract differential
equation and the basis property of a certain class of function systems in a Hilbert space. As a consequence, based on the results concerning the
well-posedness of inverse problems, we obtain the Riesz basis property and—under certain additional conditions—the Bari basis property of such systems.
Keywords:
inverse problem, equation in Hilbert space, well-posedness, completeness, Riesz basis property.
Mots-clés : final observation
Mots-clés : final observation
@article{INTO_2017_133_a1,
author = {A. B. Kostin},
title = {Criteria of the uniqueness of solutions and well-posedness of inverse source problems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {81--119},
publisher = {mathdoc},
volume = {133},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_133_a1/}
}
TY - JOUR AU - A. B. Kostin TI - Criteria of the uniqueness of solutions and well-posedness of inverse source problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 81 EP - 119 VL - 133 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_133_a1/ LA - ru ID - INTO_2017_133_a1 ER -
%0 Journal Article %A A. B. Kostin %T Criteria of the uniqueness of solutions and well-posedness of inverse source problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 81-119 %V 133 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_133_a1/ %G ru %F INTO_2017_133_a1
A. B. Kostin. Criteria of the uniqueness of solutions and well-posedness of inverse source problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional analysis, Tome 133 (2017), pp. 81-119. http://geodesic.mathdoc.fr/item/INTO_2017_133_a1/