Ыpectral analysis of linear models of viscoelasticity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 24-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine Volterra integrodifferential equations with unbounded operator coefficients in Hilbert spaces. Equations considered are abstract hyperbolic equations perturbed by terms containing Volterra integral operators. These equations can be realized as partial integrodifferential equations that appear in the theory of viscoelasticity, as Gurtin–Pipkin integrodifferential equations that describe finite-speed heat transfer in materials with memory. They also appear in averaging problems for multiphase media (Darcy’s law).
Keywords:
integrodifferential equation, spectral analysis, operator-valued function.
@article{INTO_2017_132_a5,
author = {V. V. Vlasov and N. A. Rautian},
title = {{\CYRERY}pectral analysis of linear models of viscoelasticity},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {24--28},
publisher = {mathdoc},
volume = {132},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a5/}
}
TY - JOUR AU - V. V. Vlasov AU - N. A. Rautian TI - Ыpectral analysis of linear models of viscoelasticity JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 24 EP - 28 VL - 132 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_132_a5/ LA - ru ID - INTO_2017_132_a5 ER -
%0 Journal Article %A V. V. Vlasov %A N. A. Rautian %T Ыpectral analysis of linear models of viscoelasticity %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 24-28 %V 132 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_132_a5/ %G ru %F INTO_2017_132_a5
V. V. Vlasov; N. A. Rautian. Ыpectral analysis of linear models of viscoelasticity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 24-28. http://geodesic.mathdoc.fr/item/INTO_2017_132_a5/