Discretization procedure for linear dynamical systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 20-23
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe in detail a method of construction of a discrete linear dynamical model of a controllable object in the recurrent Cauchy form corresponding to an initial continuous dynamical system. We describe discretization algorithms for free and forced motion of a linear continuous dynamical system and propose methods of construction of the state, control, and perturbation transition matrices.
Keywords:
discretization of a linear dynamical system, model of perturbed motion
Mots-clés : Cauchy formula.
Mots-clés : Cauchy formula.
@article{INTO_2017_132_a4,
author = {A. F. Shorikov},
title = {Discretization procedure for linear dynamical systems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {20--23},
year = {2017},
volume = {132},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a4/}
}
TY - JOUR AU - A. F. Shorikov TI - Discretization procedure for linear dynamical systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 20 EP - 23 VL - 132 UR - http://geodesic.mathdoc.fr/item/INTO_2017_132_a4/ LA - ru ID - INTO_2017_132_a4 ER -
A. F. Shorikov. Discretization procedure for linear dynamical systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 20-23. http://geodesic.mathdoc.fr/item/INTO_2017_132_a4/