Discretization procedure for linear dynamical systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 20-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe in detail a method of construction of a discrete linear dynamical model of a controllable object in the recurrent Cauchy form corresponding to an initial continuous dynamical system. We describe discretization algorithms for free and forced motion of a linear continuous dynamical system and propose methods of construction of the state, control, and perturbation transition matrices.
Keywords: discretization of a linear dynamical system, model of perturbed motion
Mots-clés : Cauchy formula.
@article{INTO_2017_132_a4,
     author = {A. F. Shorikov},
     title = {Discretization procedure for linear dynamical systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {20--23},
     publisher = {mathdoc},
     volume = {132},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a4/}
}
TY  - JOUR
AU  - A. F. Shorikov
TI  - Discretization procedure for linear dynamical systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 20
EP  - 23
VL  - 132
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_132_a4/
LA  - ru
ID  - INTO_2017_132_a4
ER  - 
%0 Journal Article
%A A. F. Shorikov
%T Discretization procedure for linear dynamical systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 20-23
%V 132
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_132_a4/
%G ru
%F INTO_2017_132_a4
A. F. Shorikov. Discretization procedure for linear dynamical systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 20-23. http://geodesic.mathdoc.fr/item/INTO_2017_132_a4/