On the solvability of a matrix boundary-value problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 139-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We found solvability conditions and a construction of the generalized Green operator for a linear matrix boundary-value problem; we present an operator that reduces a linear matrix equation to the conventional linear Noether boundary-value problem. To solve a linear matrix system, we use the operator that reduces a linear matrix equation to a linear algebraic equation with a rectangular matrix.
Keywords: Green operator, Noether boundary-value problem, matrix differential equation.
@article{INTO_2017_132_a31,
     author = {S. M. Chujko},
     title = {On the solvability of a matrix boundary-value problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {139--143},
     publisher = {mathdoc},
     volume = {132},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a31/}
}
TY  - JOUR
AU  - S. M. Chujko
TI  - On the solvability of a matrix boundary-value problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 139
EP  - 143
VL  - 132
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_132_a31/
LA  - ru
ID  - INTO_2017_132_a31
ER  - 
%0 Journal Article
%A S. M. Chujko
%T On the solvability of a matrix boundary-value problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 139-143
%V 132
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_132_a31/
%G ru
%F INTO_2017_132_a31
S. M. Chujko. On the solvability of a matrix boundary-value problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 139-143. http://geodesic.mathdoc.fr/item/INTO_2017_132_a31/