Ыmooth solutions to some differential-difference equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 131-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a scalar linear differential-difference equation (LDDE) of neutral type $\dot{x}(t)+p(t)\dot{x}(t-1)=a(t)x(t-1)+f(t)$. We examine the initial-value problem with an initial function in the case where the initial condition is given on an initial set. We use the method of polynomial quasisolutions based on the representation of the unknown function $x(t)$ in the form of a polynomial of degree $N$. Substituting this function in the original equation we obtain the discrepancy $\Delta(t)=O(t^{N})$, for which an exact analytic representation is obtained. We prove that if a polynomial quasisolution of degree $N$ is taken as an initial function, then the smoothness of the solution generated by this initial functions at connection points in no less than $N$.
Keywords: differential-difference equation, initial-value problem with an initial function, smooth solution.
Mots-clés : polynomial quasisolution
@article{INTO_2017_132_a29,
     author = {V. B. Cherepennikov},
     title = {{\CYRERY}mooth solutions to some differential-difference equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {131--134},
     publisher = {mathdoc},
     volume = {132},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a29/}
}
TY  - JOUR
AU  - V. B. Cherepennikov
TI  - Ыmooth solutions to some differential-difference equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 131
EP  - 134
VL  - 132
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_132_a29/
LA  - ru
ID  - INTO_2017_132_a29
ER  - 
%0 Journal Article
%A V. B. Cherepennikov
%T Ыmooth solutions to some differential-difference equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 131-134
%V 132
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_132_a29/
%G ru
%F INTO_2017_132_a29
V. B. Cherepennikov. Ыmooth solutions to some differential-difference equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 131-134. http://geodesic.mathdoc.fr/item/INTO_2017_132_a29/