Oscillation, rotation, and wandering of solutions to linear differential systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 117-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

For solutions of a linear system on the semi-axis, we introduce a series of Lyapunov exponents that describe the oscillation, rotation, and wandering properties of these solutions. In the case of systems with constant matrices, these exponents are closely related to the imaginary parts of the eigenvalues. We examine the problem on the existence of a similar relationship in the case of piecewise constant of arbitrary systems.
Keywords: differential equation, linear system, autonomous system, zeros of solution, wandering, characteristic exponent.
Mots-clés : oscillation, rotation
@article{INTO_2017_132_a26,
     author = {I. N. Sergeev},
     title = {Oscillation, rotation, and wandering of solutions to linear differential systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {117--121},
     publisher = {mathdoc},
     volume = {132},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Oscillation, rotation, and wandering of solutions to linear differential systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2017
SP  - 117
EP  - 121
VL  - 132
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/
LA  - ru
ID  - INTO_2017_132_a26
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Oscillation, rotation, and wandering of solutions to linear differential systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2017
%P 117-121
%V 132
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/
%G ru
%F INTO_2017_132_a26
I. N. Sergeev. Oscillation, rotation, and wandering of solutions to linear differential systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 117-121. http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/