Oscillation, rotation, and wandering of solutions to linear differential systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 117-121
Cet article a éte moissonné depuis la source Math-Net.Ru
For solutions of a linear system on the semi-axis, we introduce a series of Lyapunov exponents that describe the oscillation, rotation, and wandering properties of these solutions. In the case of systems with constant matrices, these exponents are closely related to the imaginary parts of the eigenvalues. We examine the problem on the existence of a similar relationship in the case of piecewise constant of arbitrary systems.
Keywords:
differential equation, linear system, autonomous system, zeros of solution, wandering, characteristic exponent.
Mots-clés : oscillation, rotation
Mots-clés : oscillation, rotation
@article{INTO_2017_132_a26,
author = {I. N. Sergeev},
title = {Oscillation, rotation, and wandering of solutions to linear differential systems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {117--121},
year = {2017},
volume = {132},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/}
}
TY - JOUR AU - I. N. Sergeev TI - Oscillation, rotation, and wandering of solutions to linear differential systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 117 EP - 121 VL - 132 UR - http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/ LA - ru ID - INTO_2017_132_a26 ER -
%0 Journal Article %A I. N. Sergeev %T Oscillation, rotation, and wandering of solutions to linear differential systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 117-121 %V 132 %U http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/ %G ru %F INTO_2017_132_a26
I. N. Sergeev. Oscillation, rotation, and wandering of solutions to linear differential systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 117-121. http://geodesic.mathdoc.fr/item/INTO_2017_132_a26/