Spectral set of a linear system with discrete time
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 101-104
Voir la notice de l'article provenant de la source Math-Net.Ru
Fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ of a discrete linear homogeneous system of the form
\begin{equation*} x(m+1)=A(m)x(m),\quad m\in\mathbb N,\quad x\in\mathbb R^n, \end{equation*}
where the matrix $A(\cdot)$ is completely bounded on $\mathbb N$. The spectral set of this system corresponding to a given class of perturbations is the collection of complete spectra of the Lyapunov exponents of perturbed systems when perturbations runs over the whole class considered. In this paper, we examine the class ${\mathcal R}$ of multiplicative perturbations of the form
\begin{equation*} y(m+1)=A(m)R(m)x(m),\quad m\in\mathbb N,\quad y\in\mathbb R^n, \end{equation*}
where the matrix $R(\cdot)$ is completely bounded on $\mathbb N$. We obtain conditions that guarantee the coincidence of the spectral set $\lambda({\mathcal R})$ corresponding to the class ${\mathcal R}$ with the set of all nondecreasing tuples of $n$ numbers.
Keywords:
linear system with discrete time, Lyapunov exponent
Mots-clés : perturbation of coefficients.
Mots-clés : perturbation of coefficients.
@article{INTO_2017_132_a22,
author = {S. N. Popova and I. N. Banshchikova},
title = {Spectral set of a linear system with discrete time},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {101--104},
publisher = {mathdoc},
volume = {132},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a22/}
}
TY - JOUR AU - S. N. Popova AU - I. N. Banshchikova TI - Spectral set of a linear system with discrete time JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 101 EP - 104 VL - 132 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2017_132_a22/ LA - ru ID - INTO_2017_132_a22 ER -
%0 Journal Article %A S. N. Popova %A I. N. Banshchikova %T Spectral set of a linear system with discrete time %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 101-104 %V 132 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2017_132_a22/ %G ru %F INTO_2017_132_a22
S. N. Popova; I. N. Banshchikova. Spectral set of a linear system with discrete time. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 101-104. http://geodesic.mathdoc.fr/item/INTO_2017_132_a22/