Oscillation criterion for autonomous differential equations with bounded aftereffect
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 68-73
Cet article a éte moissonné depuis la source Math-Net.Ru
For autonomous functional-differential equations with delays, we obtain an oscillation criterion, which allows one to reduce the oscillation problem to the calculation of a unique root of a real-valued function determined by the coefficients of the original equation. The criterion is illustrated by examples of equations with concentrated and distributed aftereffect, for which convenient oscillation tests are obtained.
Keywords:
differential equation with aftereffect, concentrated and distributed delay.
Mots-clés : oscillation
Mots-clés : oscillation
@article{INTO_2017_132_a15,
author = {V. V. Malygina},
title = {Oscillation criterion for autonomous differential equations with bounded aftereffect},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {68--73},
year = {2017},
volume = {132},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2017_132_a15/}
}
TY - JOUR AU - V. V. Malygina TI - Oscillation criterion for autonomous differential equations with bounded aftereffect JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2017 SP - 68 EP - 73 VL - 132 UR - http://geodesic.mathdoc.fr/item/INTO_2017_132_a15/ LA - ru ID - INTO_2017_132_a15 ER -
%0 Journal Article %A V. V. Malygina %T Oscillation criterion for autonomous differential equations with bounded aftereffect %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2017 %P 68-73 %V 132 %U http://geodesic.mathdoc.fr/item/INTO_2017_132_a15/ %G ru %F INTO_2017_132_a15
V. V. Malygina. Oscillation criterion for autonomous differential equations with bounded aftereffect. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of International Symposium “Differential Equations–2016”, Perm, May 17-18, 2016, Tome 132 (2017), pp. 68-73. http://geodesic.mathdoc.fr/item/INTO_2017_132_a15/