Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2002_11_a0, author = {\`E. G. Poznyak and A. G. Popov}, title = {Non-Euclidean geometry: {The} {Gauss} formula and an interpretation of partial differential equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {5--23}, publisher = {mathdoc}, volume = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2002_11_a0/} }
TY - JOUR AU - È. G. Poznyak AU - A. G. Popov TI - Non-Euclidean geometry: The Gauss formula and an interpretation of partial differential equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2002 SP - 5 EP - 23 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2002_11_a0/ LA - ru ID - INTO_2002_11_a0 ER -
%0 Journal Article %A È. G. Poznyak %A A. G. Popov %T Non-Euclidean geometry: The Gauss formula and an interpretation of partial differential equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2002 %P 5-23 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2002_11_a0/ %G ru %F INTO_2002_11_a0
È. G. Poznyak; A. G. Popov. Non-Euclidean geometry: The Gauss formula and an interpretation of partial differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry – 2, Tome 11 (2002), pp. 5-23. http://geodesic.mathdoc.fr/item/INTO_2002_11_a0/