On the cobordism classification of manifolds with $\mathbb Z/p$-action whose fixed-point set has trivial normal bundle
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Selected papers presented at the international conference dedicated to the 90th anniversary of the birth of L. S. Pontryagin (Moscow, Russia, August 31–September 9, 1998). Vol. 7. Geometry and topology, Tome 68 (1999), pp. 114-128
Voir la notice du chapitre de livre
@article{INTO_1999_68_a7,
author = {T. E. Panov},
title = {On the cobordism classification of manifolds with $\mathbb Z/p$-action whose fixed-point set has trivial normal bundle},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {114--128},
year = {1999},
volume = {68},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_1999_68_a7/}
}
TY - JOUR AU - T. E. Panov TI - On the cobordism classification of manifolds with $\mathbb Z/p$-action whose fixed-point set has trivial normal bundle JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 1999 SP - 114 EP - 128 VL - 68 UR - http://geodesic.mathdoc.fr/item/INTO_1999_68_a7/ LA - ru ID - INTO_1999_68_a7 ER -
%0 Journal Article %A T. E. Panov %T On the cobordism classification of manifolds with $\mathbb Z/p$-action whose fixed-point set has trivial normal bundle %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 1999 %P 114-128 %V 68 %U http://geodesic.mathdoc.fr/item/INTO_1999_68_a7/ %G ru %F INTO_1999_68_a7
T. E. Panov. On the cobordism classification of manifolds with $\mathbb Z/p$-action whose fixed-point set has trivial normal bundle. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Selected papers presented at the international conference dedicated to the 90th anniversary of the birth of L. S. Pontryagin (Moscow, Russia, August 31–September 9, 1998). Vol. 7. Geometry and topology, Tome 68 (1999), pp. 114-128. http://geodesic.mathdoc.fr/item/INTO_1999_68_a7/