Homoclinic tangencies of arbitrary order in Newhouse domains
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Selected papers presented at the international conference dedicated to the 90th anniversary of the birth of L. S. Pontryagin (Moscow, Russia, August 31–September 9, 1998). Vol. 6. Dynamical systems, Tome 67 (1999), pp. 69-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{INTO_1999_67_a1,
     author = {S. V. Gonchenko and D. V. Turaev and L. P. Shilnikov},
     title = {Homoclinic tangencies of arbitrary order in {Newhouse} domains},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {69--128},
     publisher = {mathdoc},
     volume = {67},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_1999_67_a1/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - D. V. Turaev
AU  - L. P. Shilnikov
TI  - Homoclinic tangencies of arbitrary order in Newhouse domains
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 1999
SP  - 69
EP  - 128
VL  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_1999_67_a1/
LA  - ru
ID  - INTO_1999_67_a1
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A D. V. Turaev
%A L. P. Shilnikov
%T Homoclinic tangencies of arbitrary order in Newhouse domains
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 1999
%P 69-128
%V 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_1999_67_a1/
%G ru
%F INTO_1999_67_a1
S. V. Gonchenko; D. V. Turaev; L. P. Shilnikov. Homoclinic tangencies of arbitrary order in Newhouse domains. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Selected papers presented at the international conference dedicated to the 90th anniversary of the birth of L. S. Pontryagin (Moscow, Russia, August 31–September 9, 1998). Vol. 6. Dynamical systems, Tome 67 (1999), pp. 69-128. http://geodesic.mathdoc.fr/item/INTO_1999_67_a1/