Quantization and the orbit method
Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 22 (1984), pp. 37-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A survey is given of the method of orbits which makes it possible to construct irreducible unitary representations of an arbitrary Lie group proceeding from mechanical considerations. After a brief introduction to symplectic geometry, a construction of a representation associated with an orbit of a group in the dual space of its Lie algebra is given. Various generalizations of this construction are discussed.
@article{INTM_1984_22_a1,
     author = {V. A. Ginzburg},
     title = {Quantization and the orbit method},
     journal = {Itogi nauki i tehniki. Seri\^a, Matemati\v{c}eskij analiz},
     pages = {37--58},
     publisher = {mathdoc},
     volume = {22},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTM_1984_22_a1/}
}
TY  - JOUR
AU  - V. A. Ginzburg
TI  - Quantization and the orbit method
JO  - Itogi nauki i tehniki. Seriâ, Matematičeskij analiz
PY  - 1984
SP  - 37
EP  - 58
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTM_1984_22_a1/
LA  - ru
ID  - INTM_1984_22_a1
ER  - 
%0 Journal Article
%A V. A. Ginzburg
%T Quantization and the orbit method
%J Itogi nauki i tehniki. Seriâ, Matematičeskij analiz
%D 1984
%P 37-58
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTM_1984_22_a1/
%G ru
%F INTM_1984_22_a1
V. A. Ginzburg. Quantization and the orbit method. Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 22 (1984), pp. 37-58. http://geodesic.mathdoc.fr/item/INTM_1984_22_a1/