Representations of orthogonal and unitary groups, and nuclear models
Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 22 (1984), pp. 3-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The foundations of the microscopic theory of the nucleus is expounded based on operator series whose first terms determine the model Hamiltonians. A formulation of the question is given and special features are discussed for the many-body problem in multiparticle quantum systems and anticollective effects of irreducible representations of unitary groups in the derivation of the Hamiltonians of exactly solvable models with strong, bounded dynamics. Traditional and nontraditional approaches to the many-body problem in the theory of the nucleus are compared.
@article{INTM_1984_22_a0,
     author = {V. V. Vanagas},
     title = {Representations of orthogonal and unitary groups, and nuclear models},
     journal = {Itogi nauki i tehniki. Seri\^a, Matemati\v{c}eskij analiz},
     pages = {3--35},
     publisher = {mathdoc},
     volume = {22},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTM_1984_22_a0/}
}
TY  - JOUR
AU  - V. V. Vanagas
TI  - Representations of orthogonal and unitary groups, and nuclear models
JO  - Itogi nauki i tehniki. Seriâ, Matematičeskij analiz
PY  - 1984
SP  - 3
EP  - 35
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTM_1984_22_a0/
LA  - ru
ID  - INTM_1984_22_a0
ER  - 
%0 Journal Article
%A V. V. Vanagas
%T Representations of orthogonal and unitary groups, and nuclear models
%J Itogi nauki i tehniki. Seriâ, Matematičeskij analiz
%D 1984
%P 3-35
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTM_1984_22_a0/
%G ru
%F INTM_1984_22_a0
V. V. Vanagas. Representations of orthogonal and unitary groups, and nuclear models. Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 22 (1984), pp. 3-35. http://geodesic.mathdoc.fr/item/INTM_1984_22_a0/