Weighted estimates for singular integrals and their applications
Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 21 (1983), pp. 42-129
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a survey of research on the problem of single-weighted and double-weighted estimates of strong and weak types for the Hardy–Littlewood maximal function, Riesz potentials, singular integral operators, and harmonic functions. Necessary and sufficient conditions on the weight are given under which weighted estimates are valid (Muckenhoupt's $A_p$-condition, Sawyer's condition, etc.). Special attention is given to papers which appeared after 1980 and the latest results, published as reports and preprints.
@article{INTM_1983_21_a1,
author = {E. M. Dyn'kin and B. P. Osilenker},
title = {Weighted estimates for singular integrals and their applications},
journal = {Itogi nauki i tehniki. Seri\^a, Matemati\v{c}eskij analiz},
pages = {42--129},
publisher = {mathdoc},
volume = {21},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTM_1983_21_a1/}
}
TY - JOUR AU - E. M. Dyn'kin AU - B. P. Osilenker TI - Weighted estimates for singular integrals and their applications JO - Itogi nauki i tehniki. Seriâ, Matematičeskij analiz PY - 1983 SP - 42 EP - 129 VL - 21 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTM_1983_21_a1/ LA - ru ID - INTM_1983_21_a1 ER -
E. M. Dyn'kin; B. P. Osilenker. Weighted estimates for singular integrals and their applications. Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 21 (1983), pp. 42-129. http://geodesic.mathdoc.fr/item/INTM_1983_21_a1/