Weighted estimates for singular integrals and their applications
Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 21 (1983), pp. 42-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a survey of research on the problem of single-weighted and double-weighted estimates of strong and weak types for the Hardy–Littlewood maximal function, Riesz potentials, singular integral operators, and harmonic functions. Necessary and sufficient conditions on the weight are given under which weighted estimates are valid (Muckenhoupt's $A_p$-condition, Sawyer's condition, etc.). Special attention is given to papers which appeared after 1980 and the latest results, published as reports and preprints.
@article{INTM_1983_21_a1,
     author = {E. M. Dyn'kin and B. P. Osilenker},
     title = {Weighted estimates for singular integrals and their applications},
     journal = {Itogi nauki i tehniki. Seri\^a, Matemati\v{c}eskij analiz},
     pages = {42--129},
     publisher = {mathdoc},
     volume = {21},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTM_1983_21_a1/}
}
TY  - JOUR
AU  - E. M. Dyn'kin
AU  - B. P. Osilenker
TI  - Weighted estimates for singular integrals and their applications
JO  - Itogi nauki i tehniki. Seriâ, Matematičeskij analiz
PY  - 1983
SP  - 42
EP  - 129
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTM_1983_21_a1/
LA  - ru
ID  - INTM_1983_21_a1
ER  - 
%0 Journal Article
%A E. M. Dyn'kin
%A B. P. Osilenker
%T Weighted estimates for singular integrals and their applications
%J Itogi nauki i tehniki. Seriâ, Matematičeskij analiz
%D 1983
%P 42-129
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTM_1983_21_a1/
%G ru
%F INTM_1983_21_a1
E. M. Dyn'kin; B. P. Osilenker. Weighted estimates for singular integrals and their applications. Itogi nauki i tehniki. Seriâ, Matematičeskij analiz, Tome 21 (1983), pp. 42-129. http://geodesic.mathdoc.fr/item/INTM_1983_21_a1/