The $m$-plane distribution in an $n$-dimensional Riemannian space
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The author generalizes some notions (such as canjugate directions, directions of curvature of the first and the second kind, principal directions), well known for $m$-dirnensional surfaces in Euclidean $n$-space to the case of a distribution of m-planes in Riemannian $V_n$. Various related results are obtained, using the method of G. F. Laptev.
@article{INTG_1974_5_a4,
     author = {J. I. Shink\={u}nas},
     title = {The $m$-plane distribution in an $n$-dimensional {Riemannian} space},
     journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
     pages = {123--133},
     year = {1974},
     volume = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/}
}
TY  - JOUR
AU  - J. I. Shinkūnas
TI  - The $m$-plane distribution in an $n$-dimensional Riemannian space
JO  - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
PY  - 1974
SP  - 123
EP  - 133
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/
LA  - ru
ID  - INTG_1974_5_a4
ER  - 
%0 Journal Article
%A J. I. Shinkūnas
%T The $m$-plane distribution in an $n$-dimensional Riemannian space
%J Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
%D 1974
%P 123-133
%V 5
%U http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/
%G ru
%F INTG_1974_5_a4
J. I. Shinkūnas. The $m$-plane distribution in an $n$-dimensional Riemannian space. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133. http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/