The $m$-plane distribution in an $n$-dimensional Riemannian space
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133
Voir la notice du chapitre de livre
The author generalizes some notions (such as canjugate directions, directions of curvature of the first and the second kind, principal directions), well known for $m$-dirnensional surfaces in Euclidean $n$-space to the case of a distribution of m-planes in Riemannian $V_n$. Various related results are obtained, using the method of G. F. Laptev.
@article{INTG_1974_5_a4,
author = {J. I. Shink\={u}nas},
title = {The $m$-plane distribution in an $n$-dimensional {Riemannian} space},
journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
pages = {123--133},
year = {1974},
volume = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/}
}
TY - JOUR AU - J. I. Shinkūnas TI - The $m$-plane distribution in an $n$-dimensional Riemannian space JO - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara PY - 1974 SP - 123 EP - 133 VL - 5 UR - http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/ LA - ru ID - INTG_1974_5_a4 ER -
J. I. Shinkūnas. The $m$-plane distribution in an $n$-dimensional Riemannian space. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133. http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/