The $m$-plane distribution in an $n$-dimensional Riemannian space
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author generalizes some notions (such as canjugate directions, directions of curvature of the first and the second kind, principal directions), well known for $m$-dirnensional surfaces in Euclidean $n$-space to the case of a distribution of m-planes in Riemannian $V_n$. Various related results are obtained, using the method of G. F. Laptev.
@article{INTG_1974_5_a4,
     author = {J. I. Shink\={u}nas},
     title = {The $m$-plane distribution in an $n$-dimensional {Riemannian} space},
     journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
     pages = {123--133},
     publisher = {mathdoc},
     volume = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/}
}
TY  - JOUR
AU  - J. I. Shinkūnas
TI  - The $m$-plane distribution in an $n$-dimensional Riemannian space
JO  - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
PY  - 1974
SP  - 123
EP  - 133
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/
LA  - ru
ID  - INTG_1974_5_a4
ER  - 
%0 Journal Article
%A J. I. Shinkūnas
%T The $m$-plane distribution in an $n$-dimensional Riemannian space
%J Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
%D 1974
%P 123-133
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/
%G ru
%F INTG_1974_5_a4
J. I. Shinkūnas. The $m$-plane distribution in an $n$-dimensional Riemannian space. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133. http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/