The $m$-plane distribution in an $n$-dimensional Riemannian space
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133
Voir la notice de l'article provenant de la source Math-Net.Ru
The author generalizes some notions (such as canjugate directions, directions of curvature of the first and the second kind, principal directions), well known for $m$-dirnensional surfaces in Euclidean $n$-space to the case of a distribution of m-planes in Riemannian $V_n$. Various related results are obtained, using the method of G. F. Laptev.
@article{INTG_1974_5_a4,
author = {J. I. Shink\={u}nas},
title = {The $m$-plane distribution in an $n$-dimensional {Riemannian} space},
journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
pages = {123--133},
publisher = {mathdoc},
volume = {5},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/}
}
TY - JOUR AU - J. I. Shinkūnas TI - The $m$-plane distribution in an $n$-dimensional Riemannian space JO - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara PY - 1974 SP - 123 EP - 133 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/ LA - ru ID - INTG_1974_5_a4 ER -
%0 Journal Article %A J. I. Shinkūnas %T The $m$-plane distribution in an $n$-dimensional Riemannian space %J Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara %D 1974 %P 123-133 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/ %G ru %F INTG_1974_5_a4
J. I. Shinkūnas. The $m$-plane distribution in an $n$-dimensional Riemannian space. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 123-133. http://geodesic.mathdoc.fr/item/INTG_1974_5_a4/