Some questions on the geometry of nonholonomic hypercomplexes $\mathrm{NGr}(1,4,5)$
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 55-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a continuation of the paper by V. J. Bliznikas and the author [1]. In § 1 of this paper the definition of a nonlrolonomic hppecomplex $\mathrm{NGr}(1,4,5)$ is given and the structure of the first fundamental object $H^1(\mathrm{NGr}(1,4,5))$ is considered. In § 2 an another non-holonomic hypercomplex, a semi-non-holonomic pseudocongruence and a semi-non-holonomic congruence asstciated to the given non-holonomic hypercomplex are obtained. In § 3 it is proved that $H^1(\mathrm{NGr}(1,4,5))$ is the principal object (see G. F. Laptev [11]) of $\mathrm{NGr}(1,4,5)$.
@article{INTG_1974_5_a1,
     author = {S. I. Grigelionis},
     title = {Some questions on the geometry of nonholonomic hypercomplexes $\mathrm{NGr}(1,4,5)$},
     journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {5},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTG_1974_5_a1/}
}
TY  - JOUR
AU  - S. I. Grigelionis
TI  - Some questions on the geometry of nonholonomic hypercomplexes $\mathrm{NGr}(1,4,5)$
JO  - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
PY  - 1974
SP  - 55
EP  - 68
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTG_1974_5_a1/
LA  - ru
ID  - INTG_1974_5_a1
ER  - 
%0 Journal Article
%A S. I. Grigelionis
%T Some questions on the geometry of nonholonomic hypercomplexes $\mathrm{NGr}(1,4,5)$
%J Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
%D 1974
%P 55-68
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTG_1974_5_a1/
%G ru
%F INTG_1974_5_a1
S. I. Grigelionis. Some questions on the geometry of nonholonomic hypercomplexes $\mathrm{NGr}(1,4,5)$. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 5 (1974), pp. 55-68. http://geodesic.mathdoc.fr/item/INTG_1974_5_a1/