Linear systems of quadratic forms
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 3 (1971), pp. 173-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with linear systems of quadratic forms. Let $L_n$ and $M_\sigma$ be two complex linear spaces of dimensions $n$ and $\sigma$ respectively. By definition a linear system of quadratic forms is a homomorphism of the symmetric part of $L_n\otimes L_n$ in $M_\sigma$. If we choose a basis in the space $L_n$ and a basis in the space $M_\sigma$, this homomorphism defines $\sigma$ square $n$-matrices $\Lambda_{ij}^\alpha$. ($\alpha=1,\dots,\sigma$; $i,j=1,\dots,n$). We consider the polynom $\det(\rho_\alpha\Lambda_{ij}^\alpha)=0$ and we suppose that it is not identically zero, i.e. the system is not singular. The algebraic variety defined by the equation $\det(\rho_\alpha\Lambda_{ij}^\alpha)=0$ is supposed to have no multiple irreducible component. If these assumptions are true, we can give some necessary and sufficient condition for the existence of a basis in $L_n$ so that all the matrices $\Lambda_{ij}^\alpha$ have the same block-diagonal form. Such a basis is constructed. Some other results are also obtained. In particular it is proved that all the quadratic forms of a singular system of rank $r$ have a common $(n-r)$-dimensional null-space.
@article{INTG_1971_3_a7,
     author = {D. V. Beklemishev},
     title = {Linear systems of quadratic forms},
     journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
     pages = {173--192},
     publisher = {mathdoc},
     volume = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTG_1971_3_a7/}
}
TY  - JOUR
AU  - D. V. Beklemishev
TI  - Linear systems of quadratic forms
JO  - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
PY  - 1971
SP  - 173
EP  - 192
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTG_1971_3_a7/
LA  - ru
ID  - INTG_1971_3_a7
ER  - 
%0 Journal Article
%A D. V. Beklemishev
%T Linear systems of quadratic forms
%J Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
%D 1971
%P 173-192
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTG_1971_3_a7/
%G ru
%F INTG_1971_3_a7
D. V. Beklemishev. Linear systems of quadratic forms. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 3 (1971), pp. 173-192. http://geodesic.mathdoc.fr/item/INTG_1971_3_a7/