A nonholonomic complex of the space~$P_4$
Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 3 (1971), pp. 149-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be the six-dimensional manifold of all straight lines $l$ of the four-dimensional projective space $P_4$, and let $\Xi$ be the six-dimensional manifold of all two-dimensional planes $\xi$ of the same space. The twelve-parametric manifold $L\times\Xi$ will be denoted by $\tilde S$. We shall associate a three-dimensional manifold $К^\xi$ of all projective mappings $k_l^\xi$ of the points of $l$ onto the sheaf of hyperplanes the axis of which is $\xi$ to each element $(l,\xi)$ of $\tilde S$. The fifteen-dimensional manifold of all triplets $(l,\xi,k_l^\xi)$ may be regarded as a fibre bundle with the base $\tilde S$. The eight-dimensional submanifold formed by all those elements $(l,\xi)\in\tilde S$ for which $l$ and $\xi$ are incident will be denoted by $S$, and the restriction of the fibre space $\tilde T$ over the manifold $S$ will be denoted by $T$. In canonical way we define a mapping $\pi$ of $T$ onto $L:(l,\xi,k_l^\xi)$. Thus we have a fibre bundle $T$ with the base $L$ and the canonical projection $\pi$. Then a non-holonomic complex of the space $P_4$ is defined as a cross-section of the fibre bundle $T$. In the paper the first neighbourhood of an element $(l,\xi,k_l^\xi)$ of the non-holonomic complex of $P_4$ is considered applying the G. F. Laptev method [3].
@article{INTG_1971_3_a6,
     author = {S. I. Grigelionis},
     title = {A nonholonomic complex of the space~$P_4$},
     journal = {Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara},
     pages = {149--172},
     publisher = {mathdoc},
     volume = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTG_1971_3_a6/}
}
TY  - JOUR
AU  - S. I. Grigelionis
TI  - A nonholonomic complex of the space~$P_4$
JO  - Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
PY  - 1971
SP  - 149
EP  - 172
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTG_1971_3_a6/
LA  - ru
ID  - INTG_1971_3_a6
ER  - 
%0 Journal Article
%A S. I. Grigelionis
%T A nonholonomic complex of the space~$P_4$
%J Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara
%D 1971
%P 149-172
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTG_1971_3_a6/
%G ru
%F INTG_1971_3_a6
S. I. Grigelionis. A nonholonomic complex of the space~$P_4$. Itogi Nauki i Tekhniki. Seriya Problemy Geometrii. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 3 (1971), pp. 149-172. http://geodesic.mathdoc.fr/item/INTG_1971_3_a6/