General ergodic theory of transformation groups with invariant measure: References
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya, Dynamical systems – 2, Tome 2 (1985), pp. 106-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@misc{INTF_1985_2_a6,
     title = {General ergodic theory of transformation groups with invariant measure: {References}},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya},
     pages = {106--111},
     year = {1985},
     volume = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTF_1985_2_a6/}
}
TY  - JOUR
TI  - General ergodic theory of transformation groups with invariant measure: References
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya
PY  - 1985
SP  - 106
EP  - 111
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/INTF_1985_2_a6/
LA  - ru
ID  - INTF_1985_2_a6
ER  - 
%0 Journal Article
%T General ergodic theory of transformation groups with invariant measure: References
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya
%D 1985
%P 106-111
%V 2
%U http://geodesic.mathdoc.fr/item/INTF_1985_2_a6/
%G ru
%F INTF_1985_2_a6
General ergodic theory of transformation groups with invariant measure: References. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya, Dynamical systems – 2, Tome 2 (1985), pp. 106-111. http://geodesic.mathdoc.fr/item/INTF_1985_2_a6/