The Atiyah–Bott–Lefschetz formula for elliptic complexes on a manifold with boundary
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 38 (1990), pp. 119-183
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Elliptic complexes on a manifold with boundary whose differentials are Boutet de Monvel operators are studied. An Atiyah–Bott–Lefschetz type formula is obtained for such complexes.
@article{INTD_1990_38_a1,
     author = {A. V. Brenner and M. A. Shubin},
     title = {The {Atiyah{\textendash}Bott{\textendash}Lefschetz} formula for elliptic complexes on a~manifold with boundary},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {119--183},
     year = {1990},
     volume = {38},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1990_38_a1/}
}
TY  - JOUR
AU  - A. V. Brenner
AU  - M. A. Shubin
TI  - The Atiyah–Bott–Lefschetz formula for elliptic complexes on a manifold with boundary
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1990
SP  - 119
EP  - 183
VL  - 38
UR  - http://geodesic.mathdoc.fr/item/INTD_1990_38_a1/
LA  - ru
ID  - INTD_1990_38_a1
ER  - 
%0 Journal Article
%A A. V. Brenner
%A M. A. Shubin
%T The Atiyah–Bott–Lefschetz formula for elliptic complexes on a manifold with boundary
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1990
%P 119-183
%V 38
%U http://geodesic.mathdoc.fr/item/INTD_1990_38_a1/
%G ru
%F INTD_1990_38_a1
A. V. Brenner; M. A. Shubin. The Atiyah–Bott–Lefschetz formula for elliptic complexes on a manifold with boundary. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 38 (1990), pp. 119-183. http://geodesic.mathdoc.fr/item/INTD_1990_38_a1/