Quantization on supermanifolds and an analytic proof of the Atiyah–Singer index theorem
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 38 (1990), pp. 3-118
Cet article a éte moissonné depuis la source Math-Net.Ru
An analytic proof of the Atiyah–Singer index, theorem is given with the help of the tools of supermathematics. The index formula for the Dirac operator on a spinor manifold is obtained here by direct calculation. A large portion of the paper is devoted to questions of quantization on supermanifolds, using spinors as example.
@article{INTD_1990_38_a0,
author = {F. F. Voronov},
title = {Quantization on supermanifolds and an analytic proof of the {Atiyah{\textendash}Singer} index theorem},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {3--118},
year = {1990},
volume = {38},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1990_38_a0/}
}
TY - JOUR AU - F. F. Voronov TI - Quantization on supermanifolds and an analytic proof of the Atiyah–Singer index theorem JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1990 SP - 3 EP - 118 VL - 38 UR - http://geodesic.mathdoc.fr/item/INTD_1990_38_a0/ LA - ru ID - INTD_1990_38_a0 ER -
%0 Journal Article %A F. F. Voronov %T Quantization on supermanifolds and an analytic proof of the Atiyah–Singer index theorem %J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya %D 1990 %P 3-118 %V 38 %U http://geodesic.mathdoc.fr/item/INTD_1990_38_a0/ %G ru %F INTD_1990_38_a0
F. F. Voronov. Quantization on supermanifolds and an analytic proof of the Atiyah–Singer index theorem. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 38 (1990), pp. 3-118. http://geodesic.mathdoc.fr/item/INTD_1990_38_a0/