Singularities of the boundary of a~domain of hyperbolicity
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 33 (1988), pp. 193-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

The singularities of hyperbolic polynomials (hypersurfaces) and the singularities of the boundary of the hyperbolicity region are investigated. Theorems on stabilization of these singularities in families with a fixed number of parameters and on their relationship with elliptic singularities are proved. The problems considered in this study are part of a research program focusing on singularities of boundaries of spaces of differential equations, proposed by V. I. Arnol'd.
@article{INTD_1988_33_a5,
     author = {A. D. Vainshtein and B. Z. Shapiro},
     title = {Singularities of the boundary of a~domain of hyperbolicity},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {193--214},
     publisher = {mathdoc},
     volume = {33},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1988_33_a5/}
}
TY  - JOUR
AU  - A. D. Vainshtein
AU  - B. Z. Shapiro
TI  - Singularities of the boundary of a~domain of hyperbolicity
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1988
SP  - 193
EP  - 214
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1988_33_a5/
LA  - ru
ID  - INTD_1988_33_a5
ER  - 
%0 Journal Article
%A A. D. Vainshtein
%A B. Z. Shapiro
%T Singularities of the boundary of a~domain of hyperbolicity
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1988
%P 193-214
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1988_33_a5/
%G ru
%F INTD_1988_33_a5
A. D. Vainshtein; B. Z. Shapiro. Singularities of the boundary of a~domain of hyperbolicity. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 33 (1988), pp. 193-214. http://geodesic.mathdoc.fr/item/INTD_1988_33_a5/