Deformations of complex superspaces and of the coherent sheaves on them
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 32 (1988), pp. 125-211
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper sets forth the basic elements of the theory of complex superspaces, coherent sheaves on them and deformations of these objects. The existence of versal deformations is proved for various objects of superanalytical geometry — superspaces, sheaves on them, subsuperspaces, SUSY-curves and so on. A construction is described of families of supermanifolds that contain all supermanifolds with a given underlying or associated split manifold.
@article{INTD_1988_32_a3,
author = {A. Yu. Vaintrob},
title = {Deformations of complex superspaces and of the coherent sheaves on them},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {125--211},
year = {1988},
volume = {32},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1988_32_a3/}
}
TY - JOUR AU - A. Yu. Vaintrob TI - Deformations of complex superspaces and of the coherent sheaves on them JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1988 SP - 125 EP - 211 VL - 32 UR - http://geodesic.mathdoc.fr/item/INTD_1988_32_a3/ LA - ru ID - INTD_1988_32_a3 ER -
%0 Journal Article %A A. Yu. Vaintrob %T Deformations of complex superspaces and of the coherent sheaves on them %J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya %D 1988 %P 125-211 %V 32 %U http://geodesic.mathdoc.fr/item/INTD_1988_32_a3/ %G ru %F INTD_1988_32_a3
A. Yu. Vaintrob. Deformations of complex superspaces and of the coherent sheaves on them. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 32 (1988), pp. 125-211. http://geodesic.mathdoc.fr/item/INTD_1988_32_a3/