Borel--Weil--Bott theory for classical Lie supergroups
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 32 (1988), pp. 71-124
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to a systematic construction of the elements of Borel–Weil–Bott theory in the supercase. The main result is a presentation of the cohomology of typical irreducible $G^0$-sheaves on $G^0/B$, where $G^0$ is the connected component of the identity in a classical complex Lie supergroup and $B\hookrightarrow G^0$ an arbitrary Borel subsupergroup. Also presented are some simple known results concerning the cohomology of irreducible $G^0$-sheaves on $G^0/P$ for a parabolic subsupergroup $P$.
@article{INTD_1988_32_a2,
author = {I. B. Penkov},
title = {Borel--Weil--Bott theory for classical {Lie} supergroups},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {71--124},
publisher = {mathdoc},
volume = {32},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1988_32_a2/}
}
TY - JOUR AU - I. B. Penkov TI - Borel--Weil--Bott theory for classical Lie supergroups JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1988 SP - 71 EP - 124 VL - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTD_1988_32_a2/ LA - ru ID - INTD_1988_32_a2 ER -
I. B. Penkov. Borel--Weil--Bott theory for classical Lie supergroups. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 32 (1988), pp. 71-124. http://geodesic.mathdoc.fr/item/INTD_1988_32_a2/