Borel--Weil--Bott theory for classical Lie supergroups
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 32 (1988), pp. 71-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a systematic construction of the elements of Borel–Weil–Bott theory in the supercase. The main result is a presentation of the cohomology of typical irreducible $G^0$-sheaves on $G^0/B$, where $G^0$ is the connected component of the identity in a classical complex Lie supergroup and $B\hookrightarrow G^0$ an arbitrary Borel subsupergroup. Also presented are some simple known results concerning the cohomology of irreducible $G^0$-sheaves on $G^0/P$ for a parabolic subsupergroup $P$.
@article{INTD_1988_32_a2,
     author = {I. B. Penkov},
     title = {Borel--Weil--Bott theory for classical {Lie} supergroups},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {71--124},
     publisher = {mathdoc},
     volume = {32},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1988_32_a2/}
}
TY  - JOUR
AU  - I. B. Penkov
TI  - Borel--Weil--Bott theory for classical Lie supergroups
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1988
SP  - 71
EP  - 124
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1988_32_a2/
LA  - ru
ID  - INTD_1988_32_a2
ER  - 
%0 Journal Article
%A I. B. Penkov
%T Borel--Weil--Bott theory for classical Lie supergroups
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1988
%P 71-124
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1988_32_a2/
%G ru
%F INTD_1988_32_a2
I. B. Penkov. Borel--Weil--Bott theory for classical Lie supergroups. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 32 (1988), pp. 71-124. http://geodesic.mathdoc.fr/item/INTD_1988_32_a2/