On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 28 (1986), pp. 207-313
Cet article a éte moissonné depuis la source Math-Net.Ru
The theory of reaction-diffusion systems in a neighborhood of a bifurcation point is considered. The basic types of space-time ordering, diffusion chaos in such systems, and sequences of bifurcations leading to complication of solutions are studied. A detailed discussion is given of a hierarchy of simplified models (one- and two-dimensional mappings, systems of ordinary differential equations, and others) which make it possible to carry out a qualitative analysis of the problem studied in the case of small regions. A number of generalizations of the equations studied and the simplest types of ordering in the two-dimensional case are described.
@article{INTD_1986_28_a2,
author = {T. S. Akhromeeva and S. P. Kurdyumov and G. G. Malinetskii and A. A. Samarskii},
title = {On the classification of the solutions of a~system of nonlinear diffusion equations in a~neighborhood of a~bifurcation point},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {207--313},
year = {1986},
volume = {28},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1986_28_a2/}
}
TY - JOUR AU - T. S. Akhromeeva AU - S. P. Kurdyumov AU - G. G. Malinetskii AU - A. A. Samarskii TI - On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1986 SP - 207 EP - 313 VL - 28 UR - http://geodesic.mathdoc.fr/item/INTD_1986_28_a2/ LA - ru ID - INTD_1986_28_a2 ER -
%0 Journal Article %A T. S. Akhromeeva %A S. P. Kurdyumov %A G. G. Malinetskii %A A. A. Samarskii %T On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point %J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya %D 1986 %P 207-313 %V 28 %U http://geodesic.mathdoc.fr/item/INTD_1986_28_a2/ %G ru %F INTD_1986_28_a2
T. S. Akhromeeva; S. P. Kurdyumov; G. G. Malinetskii; A. A. Samarskii. On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 28 (1986), pp. 207-313. http://geodesic.mathdoc.fr/item/INTD_1986_28_a2/