A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 28 (1986), pp. 95-205
Cet article a éte moissonné depuis la source Math-Net.Ru
A survey is given of results of investigating unbounded solutions (regimes with peaking) of quasilinear parabolic equations of nonlinear heat conduction with a source. Principal attention is devoted to the investigation of the property of localization of regimes with peaking. A group classification of nonlinear equations of this type is carried out, properties of a broad set of invariant (self-similar) solutions are investigated, and special methods of investigating the space-time structure of unbounded solutions are developed.
@article{INTD_1986_28_a1,
author = {V. A. Galaktionov and V. A. Dorodnitsyn and G. G. Yelenin and S. P. Kurdyumov and A. A. Samarskii},
title = {A quasilinear equation of heat conduction with a~source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {95--205},
year = {1986},
volume = {28},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1986_28_a1/}
}
TY - JOUR AU - V. A. Galaktionov AU - V. A. Dorodnitsyn AU - G. G. Yelenin AU - S. P. Kurdyumov AU - A. A. Samarskii TI - A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1986 SP - 95 EP - 205 VL - 28 UR - http://geodesic.mathdoc.fr/item/INTD_1986_28_a1/ LA - ru ID - INTD_1986_28_a1 ER -
%0 Journal Article %A V. A. Galaktionov %A V. A. Dorodnitsyn %A G. G. Yelenin %A S. P. Kurdyumov %A A. A. Samarskii %T A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures %J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya %D 1986 %P 95-205 %V 28 %U http://geodesic.mathdoc.fr/item/INTD_1986_28_a1/ %G ru %F INTD_1986_28_a1
V. A. Galaktionov; V. A. Dorodnitsyn; G. G. Yelenin; S. P. Kurdyumov; A. A. Samarskii. A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", Tome 28 (1986), pp. 95-205. http://geodesic.mathdoc.fr/item/INTD_1986_28_a1/