The Penrose transform and complex integral geometry
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", Tome 17 (1981), pp. 57-111
Cet article a éte moissonné depuis la source Math-Net.Ru
A survey is given of results on the representation of solutions of systems of massless equations in terms of solutions of the Cauchy–Riemann equations on the space of Penrose twisters. A detailed introduction to the theory of twistors is given. The basic integral transform — the Penrose transformation — is investigated by means of complex integral geometry. Other approaches to the theory of twistors are discussed and compared. In addition, the Yang–Mills equation is considered from the point of view of nonlinear Cauchy–Riemann equations.
@article{INTD_1981_17_a1,
author = {S. G. Gindikin and G. M. Henkin},
title = {The {Penrose} transform and complex integral geometry},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {57--111},
year = {1981},
volume = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1981_17_a1/}
}
TY - JOUR AU - S. G. Gindikin AU - G. M. Henkin TI - The Penrose transform and complex integral geometry JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1981 SP - 57 EP - 111 VL - 17 UR - http://geodesic.mathdoc.fr/item/INTD_1981_17_a1/ LA - ru ID - INTD_1981_17_a1 ER -
S. G. Gindikin; G. M. Henkin. The Penrose transform and complex integral geometry. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", Tome 17 (1981), pp. 57-111. http://geodesic.mathdoc.fr/item/INTD_1981_17_a1/