The Penrose transform and complex integral geometry
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 17 (1981), pp. 57-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

A survey is given of results on the representation of solutions of systems of massless equations in terms of solutions of the Cauchy–Riemann equations on the space of Penrose twisters. A detailed introduction to the theory of twistors is given. The basic integral transform — the Penrose transformation — is investigated by means of complex integral geometry. Other approaches to the theory of twistors are discussed and compared. In addition, the Yang–Mills equation is considered from the point of view of nonlinear Cauchy–Riemann equations.
@article{INTD_1981_17_a1,
     author = {S. G. Gindikin and G. M. Henkin},
     title = {The {Penrose} transform and complex integral geometry},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {57--111},
     publisher = {mathdoc},
     volume = {17},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1981_17_a1/}
}
TY  - JOUR
AU  - S. G. Gindikin
AU  - G. M. Henkin
TI  - The Penrose transform and complex integral geometry
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1981
SP  - 57
EP  - 111
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1981_17_a1/
LA  - ru
ID  - INTD_1981_17_a1
ER  - 
%0 Journal Article
%A S. G. Gindikin
%A G. M. Henkin
%T The Penrose transform and complex integral geometry
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1981
%P 57-111
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1981_17_a1/
%G ru
%F INTD_1981_17_a1
S. G. Gindikin; G. M. Henkin. The Penrose transform and complex integral geometry. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 17 (1981), pp. 57-111. http://geodesic.mathdoc.fr/item/INTD_1981_17_a1/