Gauge fields and holomorphic geometry
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 17 (1981), pp. 3-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains an exposition of the geometric theory of Yang–Mills equations in the language of Penrose twistors. A cohomological interpretation of the curvature of the connection and the current of the general holomorphic Yang–Mills field is given. Complex singularities of instanton fields are investigated.
@article{INTD_1981_17_a0,
     author = {Yu. I. Manin},
     title = {Gauge fields and holomorphic geometry},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {3--55},
     publisher = {mathdoc},
     volume = {17},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1981_17_a0/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Gauge fields and holomorphic geometry
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1981
SP  - 3
EP  - 55
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1981_17_a0/
LA  - ru
ID  - INTD_1981_17_a0
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Gauge fields and holomorphic geometry
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1981
%P 3-55
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1981_17_a0/
%G ru
%F INTD_1981_17_a0
Yu. I. Manin. Gauge fields and holomorphic geometry. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 17 (1981), pp. 3-55. http://geodesic.mathdoc.fr/item/INTD_1981_17_a0/