Solvability and properties of solutions of nonlinear elliptic equations
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 9 (1976), pp. 131-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains an exposition of variational and topological methods of investigating general nonlinear operator equations in Banach spaces. Application is given of these methods to the proof of solvability of boundary-value problems for nonlinear elliptic equations of arbitrary order, to the problem of eigenfunctions, and to bifurcation of solutions of differential equations. Results are presented of investigations of the properties of generalized solutions of quasilinear elliptic equations of higher order.
@article{INTD_1976_9_a1,
     author = {I. V. Skrypnik},
     title = {Solvability and properties of solutions of nonlinear elliptic equations},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {131--254},
     publisher = {mathdoc},
     volume = {9},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1976_9_a1/}
}
TY  - JOUR
AU  - I. V. Skrypnik
TI  - Solvability and properties of solutions of nonlinear elliptic equations
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1976
SP  - 131
EP  - 254
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1976_9_a1/
LA  - ru
ID  - INTD_1976_9_a1
ER  - 
%0 Journal Article
%A I. V. Skrypnik
%T Solvability and properties of solutions of nonlinear elliptic equations
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1976
%P 131-254
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1976_9_a1/
%G ru
%F INTD_1976_9_a1
I. V. Skrypnik. Solvability and properties of solutions of nonlinear elliptic equations. Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 9 (1976), pp. 131-254. http://geodesic.mathdoc.fr/item/INTD_1976_9_a1/