The canonical operator (the complex case)
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", Tome 1 (1973), pp. 169-195
Cet article a éte moissonné depuis la source Math-Net.Ru
We present the canonic operator method for the complex case. We prove the cocyclicity of a canonic cochain and establish a fundamental theorem on commutation.
@article{INTD_1973_1_a4,
author = {V. P. Maslov and B. Yu. Sternin},
title = {The canonical operator (the complex case)},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {169--195},
year = {1973},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1973_1_a4/}
}
TY - JOUR AU - V. P. Maslov AU - B. Yu. Sternin TI - The canonical operator (the complex case) JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1973 SP - 169 EP - 195 VL - 1 UR - http://geodesic.mathdoc.fr/item/INTD_1973_1_a4/ LA - ru ID - INTD_1973_1_a4 ER -
V. P. Maslov; B. Yu. Sternin. The canonical operator (the complex case). Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", Tome 1 (1973), pp. 169-195. http://geodesic.mathdoc.fr/item/INTD_1973_1_a4/