The canonical operator (the complex case)
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 1 (1973), pp. 169-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the canonic operator method for the complex case. We prove the cocyclicity of a canonic cochain and establish a fundamental theorem on commutation.
@article{INTD_1973_1_a4,
     author = {V. P. Maslov and B. Yu. Sternin},
     title = {The canonical operator (the complex case)},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {169--195},
     publisher = {mathdoc},
     volume = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1973_1_a4/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - B. Yu. Sternin
TI  - The canonical operator (the complex case)
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1973
SP  - 169
EP  - 195
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1973_1_a4/
LA  - ru
ID  - INTD_1973_1_a4
ER  - 
%0 Journal Article
%A V. P. Maslov
%A B. Yu. Sternin
%T The canonical operator (the complex case)
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1973
%P 169-195
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1973_1_a4/
%G ru
%F INTD_1973_1_a4
V. P. Maslov; B. Yu. Sternin. The canonical operator (the complex case). Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 1 (1973), pp. 169-195. http://geodesic.mathdoc.fr/item/INTD_1973_1_a4/