The canonical operator (the real case)
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 1 (1973), pp. 85-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine homogeneous partial differential and pseudodifferential equations containing a large parameter and the Schrцdinger and Helmholtz equations analogous to them in their properties. We present a canonic operator method which permits us to construct asymptotic solutions in the large for such classes of equations. In the paper we present as well the necessary information on analytical mechanics and on the theory of Lagrange manifolds.
@article{INTD_1973_1_a3,
     author = {V. P. Maslov and M. V. Fedoryuk},
     title = {The canonical operator (the real case)},
     journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
     pages = {85--167},
     publisher = {mathdoc},
     volume = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTD_1973_1_a3/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - M. V. Fedoryuk
TI  - The canonical operator (the real case)
JO  - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
PY  - 1973
SP  - 85
EP  - 167
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTD_1973_1_a3/
LA  - ru
ID  - INTD_1973_1_a3
ER  - 
%0 Journal Article
%A V. P. Maslov
%A M. V. Fedoryuk
%T The canonical operator (the real case)
%J Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya
%D 1973
%P 85-167
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTD_1973_1_a3/
%G ru
%F INTD_1973_1_a3
V. P. Maslov; M. V. Fedoryuk. The canonical operator (the real case). Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Tome 1 (1973), pp. 85-167. http://geodesic.mathdoc.fr/item/INTD_1973_1_a3/