The canonical operator (the real case)
Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", Tome 1 (1973), pp. 85-167
Cet article a éte moissonné depuis la source Math-Net.Ru
We examine homogeneous partial differential and pseudodifferential equations containing a large parameter and the Schrцdinger and Helmholtz equations analogous to them in their properties. We present a canonic operator method which permits us to construct asymptotic solutions in the large for such classes of equations. In the paper we present as well the necessary information on analytical mechanics and on the theory of Lagrange manifolds.
@article{INTD_1973_1_a3,
author = {V. P. Maslov and M. V. Fedoryuk},
title = {The canonical operator (the real case)},
journal = {Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya},
pages = {85--167},
year = {1973},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTD_1973_1_a3/}
}
TY - JOUR AU - V. P. Maslov AU - M. V. Fedoryuk TI - The canonical operator (the real case) JO - Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya PY - 1973 SP - 85 EP - 167 VL - 1 UR - http://geodesic.mathdoc.fr/item/INTD_1973_1_a3/ LA - ru ID - INTD_1973_1_a3 ER -
V. P. Maslov; M. V. Fedoryuk. The canonical operator (the real case). Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Noveishie Dostizheniya, Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki", Tome 1 (1973), pp. 85-167. http://geodesic.mathdoc.fr/item/INTD_1973_1_a3/