Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.
Inventiones mathematicae, Tome 121 (1995) no. 3, pp. 439-480.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : symplectic separable isogeny class, moduli space, abelian varieties, Hilbert-Blumenthal case
@article{IM_1995__121_3_144308,
     author = {Ching-Li Chai},
     title = {Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.},
     journal = {Inventiones mathematicae},
     pages = {439--480},
     publisher = {mathdoc},
     volume = {121},
     number = {3},
     year = {1995},
     zbl = {0990.11039},
     url = {http://geodesic.mathdoc.fr/item/IM_1995__121_3_144308/}
}
TY  - JOUR
AU  - Ching-Li Chai
TI  - Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.
JO  - Inventiones mathematicae
PY  - 1995
SP  - 439
EP  - 480
VL  - 121
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1995__121_3_144308/
ID  - IM_1995__121_3_144308
ER  - 
%0 Journal Article
%A Ching-Li Chai
%T Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.
%J Inventiones mathematicae
%D 1995
%P 439-480
%V 121
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1995__121_3_144308/
%F IM_1995__121_3_144308
Ching-Li Chai. Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.. Inventiones mathematicae, Tome 121 (1995) no. 3, pp. 439-480. http://geodesic.mathdoc.fr/item/IM_1995__121_3_144308/