Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.
Inventiones mathematicae, Tome 121 (1995) no. 3, pp. 439-480
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
symplectic separable isogeny class, moduli space, abelian varieties, Hilbert-Blumenthal case
@article{IM_1995__121_3_144308,
author = {Ching-Li Chai},
title = {Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.},
journal = {Inventiones mathematicae},
pages = {439--480},
publisher = {mathdoc},
volume = {121},
number = {3},
year = {1995},
zbl = {0990.11039},
url = {http://geodesic.mathdoc.fr/item/IM_1995__121_3_144308/}
}
TY - JOUR AU - Ching-Li Chai TI - Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli. JO - Inventiones mathematicae PY - 1995 SP - 439 EP - 480 VL - 121 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM_1995__121_3_144308/ ID - IM_1995__121_3_144308 ER -
Ching-Li Chai. Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli.. Inventiones mathematicae, Tome 121 (1995) no. 3, pp. 439-480. http://geodesic.mathdoc.fr/item/IM_1995__121_3_144308/