On the period matrix of a Riemann surface of large genus (with an Appendix by J. H. Conway and N. J. A. Sloane).
Inventiones mathematicae, Tome 117 (1994) no. 1, pp. 27-56
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
Schottky problem, length of the shortest closed geodesic, Schottky locus, moduli space of principally polarized abelian varieties, period matrices which are not Jacobians, arithmetic lattice
@article{IM_1994__117_1_144207,
author = {P. Sarnak and P. Buser},
title = {On the period matrix of a {Riemann} surface of large genus (with an {Appendix} by {J.} {H.} {Conway} and {N.} {J.} {A.} {Sloane).}},
journal = {Inventiones mathematicae},
pages = {27--56},
year = {1994},
volume = {117},
number = {1},
zbl = {0814.14033},
url = {http://geodesic.mathdoc.fr/item/IM_1994__117_1_144207/}
}
TY - JOUR AU - P. Sarnak AU - P. Buser TI - On the period matrix of a Riemann surface of large genus (with an Appendix by J. H. Conway and N. J. A. Sloane). JO - Inventiones mathematicae PY - 1994 SP - 27 EP - 56 VL - 117 IS - 1 UR - http://geodesic.mathdoc.fr/item/IM_1994__117_1_144207/ ID - IM_1994__117_1_144207 ER -
P. Sarnak; P. Buser. On the period matrix of a Riemann surface of large genus (with an Appendix by J. H. Conway and N. J. A. Sloane).. Inventiones mathematicae, Tome 117 (1994) no. 1, pp. 27-56. http://geodesic.mathdoc.fr/item/IM_1994__117_1_144207/