A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.
Inventiones mathematicae, Tome 113 (1993) no. 2, pp. 511-530.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : infinite-dimensional Lie groups, approximation of measure-preserving transformations, eigenvalues, area-preserving diffeomorphisms, divergence-free (Hamiltonian) vector fields, Schur-Horn-Kostant theorem, measure-preserving diffeomorphism
@article{IM_1993__113_2_144135,
     author = {A.M. Bloch and H. Flaschka and T. Ratiu},
     title = {A {Schur-Horn-Kostant} convexity theorem for the diffeomorphism group of the annulus.},
     journal = {Inventiones mathematicae},
     pages = {511--530},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {1993},
     zbl = {0806.22012},
     url = {http://geodesic.mathdoc.fr/item/IM_1993__113_2_144135/}
}
TY  - JOUR
AU  - A.M. Bloch
AU  - H. Flaschka
AU  - T. Ratiu
TI  - A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.
JO  - Inventiones mathematicae
PY  - 1993
SP  - 511
EP  - 530
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1993__113_2_144135/
ID  - IM_1993__113_2_144135
ER  - 
%0 Journal Article
%A A.M. Bloch
%A H. Flaschka
%A T. Ratiu
%T A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.
%J Inventiones mathematicae
%D 1993
%P 511-530
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1993__113_2_144135/
%F IM_1993__113_2_144135
A.M. Bloch; H. Flaschka; T. Ratiu. A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.. Inventiones mathematicae, Tome 113 (1993) no. 2, pp. 511-530. http://geodesic.mathdoc.fr/item/IM_1993__113_2_144135/