A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.
Inventiones mathematicae, Tome 113 (1993) no. 2, pp. 511-530
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
infinite-dimensional Lie groups, approximation of measure-preserving transformations, eigenvalues, area-preserving diffeomorphisms, divergence-free (Hamiltonian) vector fields, Schur-Horn-Kostant theorem, measure-preserving diffeomorphism
@article{IM_1993__113_2_144135,
author = {A.M. Bloch and H. Flaschka and T. Ratiu},
title = {A {Schur-Horn-Kostant} convexity theorem for the diffeomorphism group of the annulus.},
journal = {Inventiones mathematicae},
pages = {511--530},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {1993},
zbl = {0806.22012},
url = {http://geodesic.mathdoc.fr/item/IM_1993__113_2_144135/}
}
TY - JOUR AU - A.M. Bloch AU - H. Flaschka AU - T. Ratiu TI - A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus. JO - Inventiones mathematicae PY - 1993 SP - 511 EP - 530 VL - 113 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM_1993__113_2_144135/ ID - IM_1993__113_2_144135 ER -
A.M. Bloch; H. Flaschka; T. Ratiu. A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus.. Inventiones mathematicae, Tome 113 (1993) no. 2, pp. 511-530. http://geodesic.mathdoc.fr/item/IM_1993__113_2_144135/