An algorithmic proof theory for hypergeometric (ordinary and
Inventiones mathematicae, Tome 108 (1992) no. 2, pp. 575-634.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : holonomic, recurrence relation, Mehta-Dyson integrals, hypergeometric, multisum, identity
@article{IM_1992__108_2_144006,
     author = {Herbert S. Wilf and Doron Zeilberger},
     title = {An algorithmic proof theory for hypergeometric (ordinary and},
     journal = {Inventiones mathematicae},
     pages = {575--634},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {1992},
     zbl = {0739.05007},
     url = {http://geodesic.mathdoc.fr/item/IM_1992__108_2_144006/}
}
TY  - JOUR
AU  - Herbert S. Wilf
AU  - Doron Zeilberger
TI  - An algorithmic proof theory for hypergeometric (ordinary and
JO  - Inventiones mathematicae
PY  - 1992
SP  - 575
EP  - 634
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1992__108_2_144006/
ID  - IM_1992__108_2_144006
ER  - 
%0 Journal Article
%A Herbert S. Wilf
%A Doron Zeilberger
%T An algorithmic proof theory for hypergeometric (ordinary and
%J Inventiones mathematicae
%D 1992
%P 575-634
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1992__108_2_144006/
%F IM_1992__108_2_144006
Herbert S. Wilf; Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and. Inventiones mathematicae, Tome 108 (1992) no. 2, pp. 575-634. http://geodesic.mathdoc.fr/item/IM_1992__108_2_144006/