A mod k index theorem.
Inventiones mathematicae, Tome 107 (1992) no. 1, pp. 283-300.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : index-theory, totally characteristic pseudodifferential operators, -manifold, Dirac operators
@article{IM_1992__107_1_143967,
     author = {Daniel S. Freed and Richard B. Melrose},
     title = {A mod k index theorem.},
     journal = {Inventiones mathematicae},
     pages = {283--300},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {1992},
     zbl = {0760.58039},
     url = {http://geodesic.mathdoc.fr/item/IM_1992__107_1_143967/}
}
TY  - JOUR
AU  - Daniel S. Freed
AU  - Richard B. Melrose
TI  - A mod k index theorem.
JO  - Inventiones mathematicae
PY  - 1992
SP  - 283
EP  - 300
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1992__107_1_143967/
ID  - IM_1992__107_1_143967
ER  - 
%0 Journal Article
%A Daniel S. Freed
%A Richard B. Melrose
%T A mod k index theorem.
%J Inventiones mathematicae
%D 1992
%P 283-300
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1992__107_1_143967/
%F IM_1992__107_1_143967
Daniel S. Freed; Richard B. Melrose. A mod k index theorem.. Inventiones mathematicae, Tome 107 (1992) no. 1, pp. 283-300. http://geodesic.mathdoc.fr/item/IM_1992__107_1_143967/