Rational points on K3 surfaces: A new canonical height.
Inventiones mathematicae, Tome 105 (1991) no. 3, pp. 347-374.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : chain of rational points, Vojta conjecture, Weil height function, marked surface, canonical height, growth of logarithmic heights of integral points on elliptic curves
@article{IM_1991__105_3_143916,
     author = {Joseph H. Silverman},
     title = {Rational points on {K3} surfaces: {A} new canonical height.},
     journal = {Inventiones mathematicae},
     pages = {347--374},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {1991},
     zbl = {0754.14023},
     url = {http://geodesic.mathdoc.fr/item/IM_1991__105_3_143916/}
}
TY  - JOUR
AU  - Joseph H. Silverman
TI  - Rational points on K3 surfaces: A new canonical height.
JO  - Inventiones mathematicae
PY  - 1991
SP  - 347
EP  - 374
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1991__105_3_143916/
ID  - IM_1991__105_3_143916
ER  - 
%0 Journal Article
%A Joseph H. Silverman
%T Rational points on K3 surfaces: A new canonical height.
%J Inventiones mathematicae
%D 1991
%P 347-374
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1991__105_3_143916/
%F IM_1991__105_3_143916
Joseph H. Silverman. Rational points on K3 surfaces: A new canonical height.. Inventiones mathematicae, Tome 105 (1991) no. 3, pp. 347-374. http://geodesic.mathdoc.fr/item/IM_1991__105_3_143916/