Invariant measures exist under a summability condition for unimodal maps.
Inventiones mathematicae, Tome 105 (1991) no. 3, pp. 123-136
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
unimodal maps, iterations, negative Schwarzian derivative, critical value, invariant probability measure
@article{IM_1991__105_3_143905,
author = {Tomasz Nowicki and Sebastian van Strien},
title = {Invariant measures exist under a summability condition for unimodal maps.},
journal = {Inventiones mathematicae},
pages = {123--136},
year = {1991},
volume = {105},
number = {3},
zbl = {0736.58030},
url = {http://geodesic.mathdoc.fr/item/IM_1991__105_3_143905/}
}
TY - JOUR AU - Tomasz Nowicki AU - Sebastian van Strien TI - Invariant measures exist under a summability condition for unimodal maps. JO - Inventiones mathematicae PY - 1991 SP - 123 EP - 136 VL - 105 IS - 3 UR - http://geodesic.mathdoc.fr/item/IM_1991__105_3_143905/ ID - IM_1991__105_3_143905 ER -
Tomasz Nowicki; Sebastian van Strien. Invariant measures exist under a summability condition for unimodal maps.. Inventiones mathematicae, Tome 105 (1991) no. 3, pp. 123-136. http://geodesic.mathdoc.fr/item/IM_1991__105_3_143905/