Invariant measures exist under a summability condition for unimodal maps.
Inventiones mathematicae, Tome 105 (1991) no. 3, pp. 123-136.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : unimodal maps, iterations, negative Schwarzian derivative, critical value, invariant probability measure
@article{IM_1991__105_3_143905,
     author = {Tomasz Nowicki and Sebastian van Strien},
     title = {Invariant measures exist under a summability condition for unimodal maps.},
     journal = {Inventiones mathematicae},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {1991},
     zbl = {0736.58030},
     url = {http://geodesic.mathdoc.fr/item/IM_1991__105_3_143905/}
}
TY  - JOUR
AU  - Tomasz Nowicki
AU  - Sebastian van Strien
TI  - Invariant measures exist under a summability condition for unimodal maps.
JO  - Inventiones mathematicae
PY  - 1991
SP  - 123
EP  - 136
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM_1991__105_3_143905/
ID  - IM_1991__105_3_143905
ER  - 
%0 Journal Article
%A Tomasz Nowicki
%A Sebastian van Strien
%T Invariant measures exist under a summability condition for unimodal maps.
%J Inventiones mathematicae
%D 1991
%P 123-136
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM_1991__105_3_143905/
%F IM_1991__105_3_143905
Tomasz Nowicki; Sebastian van Strien. Invariant measures exist under a summability condition for unimodal maps.. Inventiones mathematicae, Tome 105 (1991) no. 3, pp. 123-136. http://geodesic.mathdoc.fr/item/IM_1991__105_3_143905/