On the structure of complete Kähler manifolds with nonnegative curvature near infinity.
Inventiones mathematicae, Tome 99 (1990) no. 1, pp. 579-600
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
finite topological type, harmonic function, Buseman function, geometric structure at infinity, Kähler manifold, nonnegative curvature, first homology group, first Betti number, large end
@article{IM_1990__99_1_143771,
author = {Peter Li},
title = {On the structure of complete {K\"ahler} manifolds with nonnegative curvature near infinity.},
journal = {Inventiones mathematicae},
pages = {579--600},
publisher = {mathdoc},
volume = {99},
number = {1},
year = {1990},
zbl = {0695.53052},
url = {http://geodesic.mathdoc.fr/item/IM_1990__99_1_143771/}
}
Peter Li. On the structure of complete Kähler manifolds with nonnegative curvature near infinity.. Inventiones mathematicae, Tome 99 (1990) no. 1, pp. 579-600. http://geodesic.mathdoc.fr/item/IM_1990__99_1_143771/